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We derive several versions of the (complex) amplitude equation of an inviscid wave 
packet travelling on a slightly inhomogeneous (and possibly unsteady and viscous) 
unstable base flow. This is done with complete generality, without any reference to 
the dimensions of physical and propagation spaces, by using the usual high- 
frequency ansatz. The final results are extremely simple: volume integrals of a 
complex wave action density are conserved subject to an appropriate flux and a 
source term. The latter is expressible in a remarkably concise way in terms of the 
gradient of the base flow acceleration and vanishes when the base flow is inviscid. The 
simplicity of our results hinges on a transformation of the dependent variables and 
on a suitable decomposition of these in cross- and propagation spaces. Our results are 
also discussed with the help of three different Lagrangian densities and their 
associated kinematic wave theories which are based on a basic identity due to Hayes. 

1. Introduction 
There is considerable renewed interest in the study of the evolution of small- 

amplitude disturbances in an unstable base flow (such as a mixing layer). Historically, 
such studies were aimed at understanding the laminar-turbulent transition process ; 
more recently, however, some of the focus has shifted to fully turbulent flows. When 
these flows are artificially perturbed by certain types of external excitation, so-called 
large-scale structures are produced. The characteristics of these structures are 
actively being studied, both experimentally and theoretically. 

For the purposes of this paper, it is sufficient to note that many of the important 
features of the large-scale structures can be described, with surprising and 
remarkable accuracy, by the linear instability modes of a (fictitious) base flow, whose 
velocity profile is the long-time average velocity. This remark has been confirmed by 
several independent studies in a variety of free-shear flows (Gaster, Kit & Wygnanski 
1985 (in mixing layers) ; Wygnanski, Champagne & Marasli 1986 (in wakes) ; Petersen 
& Samet 1988 (in jets)). The excitation of turbulent flows is desirable from the point 
of view of controlling the dynamics of the flow via the introduction of controlled large- 
scale structures; for example, the size of the separation zone on the suction side of 
an airfoil may be reduced by irradiating this zone with sound (I. Wygnanski 1986, 
private communication). 

An arbitrary small disturbance in a typical unstable flow will quickly 'disperse ' 
into an instability wave packet (Gaster & Grant 1975). Here, the physical mechanism 
of dispersion (perhaps a more convenient term is distortion) is quite different from 
classical wave dispersion ; for the case of instability waves, dispersion arises from 
variations of growth rate with respect to wavenumber in addition to variations of 
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phase speed. Since the overall characteristic lengthscale of the packet is usually a 
good bit smaller than the lengthscale on which the base flow appears non-parallel 
(owing, for example, to viscous or turbulent stresses), the elementary oscillations in 
the packet are nearly plane, progressive modal waves whose characteristics (e.g. 
frequency, growth rate, wavenumber) are changing slowly in some sense (to be made 
precise in $4). These remarks suggest that the methods of multiple scales and 
kinematic wave theory are ideally suited for the description of wave packets in 
unstable shear flows. 

Indeed, both of these methods have been applied, beginning with the pioneering 
contributions of Crighton & Gaster (1976) and Landahl (1972). In the former, the 
authors use the method of multiple scales to obtain the lowest-order uniformly valid 
solution for a spatial instability mode evolving on a slowly diverging jet. Their small 
parameter is the ratio of the streamwise wavelength of the mode to the streamwise 
lengthscale of the flow ; we call this parameter (or any other reasonable representation 
of it) the inhomogeneity parameter, e -4 1.  On the other hand, Landahl (1972) 
proposes an extension to Whitham’s (1965) ‘ amplitude equation ’ for non- 
conservative systems (i.e. instability waves) and uses his equation to discuss a 
possible mechanism for the ‘ breakdown ’ of laminar flows. This breakdown arises 
when the ‘energy’ of the wave, carried by the group velocity, is propagating along 
a ray tube whose cross-sectional area decreases to (near) zero (i.e. a simple focus) ; 
under certain simplifying conditions, this happens when the difference between the 
phase velocity of the primary wave and the (real) group velocity of the secondary 
wave vanishes. In other words, in a reference frame moving with the phase velocity 
of the primary wave, the energy of the secondary wave cannot propagate away 
(because the group velocity is zero) ; in a sense, the waves ‘pile up’ and produce large 
fluctuations which result in breakdown. Some of the original criticisms of Stewartson 
(1974) on this issue have been partially removed by Nayfeh (1980) and Russell (1986) 
(see also Landahl 1982 and Chin 1980). 

At this point, we must mention two important contributions to kinematic wave 
theory by Whitham (1965) and Hayes (1970). In a seminal paper, Whitham defined 
wave action density and flux in terms of derivatives, of an averaged Lagrangian, with 
respect to frequency and wavenumber, and showed that wave action obeys a 
conservation law. The averaged Lagrangian is obtained by substituting into the 
actual Lagrangian density an elementary progressive wave solution with slowly 
varying amplitude, A ,  wavenumber, k, and frequency, w ,  and then averaging the 
resultant equation over one oscillation (while ignoring any changes in these slowly 
varying quantities). If we now define a local (slowly varying) phase, $, whose suitable 
time and space derivatives give the local frequency and wavenumber, then the 
original variational principle, now applied to the averaged Lagrangian (which is 
written in terms of the derivatives of the phase), yields the conservation law for the 
wave action. This law arises from the Euler equation corresponding to variations in 
the phase. The enormous beauty of Whitham’s approach is its power to deal simply 
with progressive waves in nonlinear (as well as linear) conservative systems (e.g. it 
enables one to naturally define dispersion for nonlinear systems). 

In an equally important paper, Hayes (1970) proposed an alternative approach to 
the definition of wave action. In Whitham’s (1965) theory, this entity arises from a 
variational principle applied to an averaged Lagrangian, while in Hayes’ work, we 
find an absolute conservation law, valid in physical space, defined over a periodic 
one-parameter family of solutions (see equations (9c) of this paper). These two 
approaches differ for modal waves; Hayes’ approach gives a conservation law in 
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physical space, and the integral of this law over cross-space gives Whitham’s results. 
In $7 ,  we shall apply Hayes’ method to the problem of instability wave packets at 
hand. 

The concepts of wave action density and flux may be generalized considerably ; 
these generalizations do not depend on the approximations of slow amplitude 
modulation, linearization, and conservative motion, or on the existence of a 
Lagrangian for the description of the flow field (Andrews & McIntyre 1978a, b ) .  The 
essential idea is the separation of the base flow and the disturbance (i.e. wave) field 
as cleanly as possible - even at finite amplitudes ; this is accomplished most readily 
in terms of a displacement variable and a hybrid (Eulerian-Lagrangian) formulation. 
Andrews & McIntyre find (as do we) that wave action is not conserved when the 
motion is non-conservative. 

In spite of the power of the approaches of Whitham (1965) and Hayes (1970), they 
are seldom applied to instability waves because of a number of obstacles (to be 
discussed below). Notable exceptions are the works of Landahl (1972, 1982) and 
Russell (1986). Wave packets and spatial instability modes in inhomogeneous base 
flows are usually treated by the method of multiple scales. Itoh (1980) obtains an 
amplitude equation for a two-dimensional wave packet in a parallel shear flow and 
finds that the square of the complex amplitude, A ,  obeys the usual conservation law. 
The situation is unreasonably more complicated, however, when the base flow is 
slowly changing ; although, in this case, it is possible to obtain an amplitude equation 
(for A 2 )  which contains a ‘source term ’, proportional to A2. Even in the simplest case, 
the coefficient of this term is horrendously lengthy and complicated ; it involves the 
partial derivatives of the modes with respect to the slowly varying coordinates, as 
well as the wavenumber. These derivatives are taken in an augmented space implied 
by (23b) .  Of course, derivatives of the base flow also appear. 

Although the relevant amplitude equation can be obtained in a fairly straight- 
forward manner (see Nayfeh 1980; Itoh 1981) and can be used in numerically 
oriented studies to obtain answers to specific problems, it seems almost certain that 
the essential physics is contained in this equation in a very awkward manner. For 
example, it is far more important to know that there is an adiabatic invariant for the 
simple pendulum whose length is slowly changing than to know that there is an 
amplitude equation which, in principle, may be solved to obtain useful results. 

Part of the problem is that the (Eulerian) perturbation velocity, u, and 
perturbation pressure, p ,  are not the best variables to use for the derivation of an 
amplitude equation. After all, even in conservative wave systems, the law of wave 
action ‘naturally falls out ’ only from a Lagrangian formalism ; the derivation of this 
by other means is a difficult task (Luke 1966; Bretherton 1968). Eulerian velocity 
fields are seldom used in the construction of a Lagrangian density. 

Russell (1986), clearly realizing some of these problems, introduced a new set of 
dependent variables, say ( a , p ) ,  in place of ( u , p ) .  In addition, he also introduced 
auxiliary variables, say (/3, n), and constructed a (bilinear) Lagrangian density in the 
eight variables @ = (a, /3,p, n). By choosing (a ,  p )  and (/I, n) to be unstable and stable 
waves, respectively, Russell could average the Lagrangian density over one 
oscillation and then, building on the ideas of Whitham (1965), he derived a pure 
conservation law for the (bilinear) wave action, 

The introduction of a bilinear Lagrangian density is desirable (but not absolutely 
necessary if one is willing to deal with not only the lowest-order solution but also the 
next higher-order one) since it overcomes the presence of rapidly varying terms in the 
averaged Lagrangian (see $7.2) .  On the other hand, the limitation of the bilinear 
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wave action is that it only says something (very roughly speaking!) about the 
product amplitude (AB), where A and B are the amplitudes of ( a , p )  and (j?,n), 
respectively. From this, it  is generally not possible to discern the individual 
behaviour of A (or B). In  some sense, the bilinear wave action is reminiscent of the 
‘adjoint wave action density’ of Nayfeh (1980). 

However, by far the most serious limitation of Russell’s (1986) work is his 
assumption that the base flow is inviscid. In  most practical flows of interest, the 
(small) inhomogeneity of the base flow is caused by viscous or turbulent stresses (i.e. 
diverging mixing layers, jets, and wakes), and one would certainly like to trace the 
evolution and secondary instabilities of a wave packet in these flows. This problem, 
not addressed by Russell, is important both for the laminar-turbulent transition 
process as well as for the control of turbulent flows by external excitation. 

Our principal objective is to develop a simple amplitude equation for a completely 
arbitrary wave packet riding on a slightly inhomogeneous, but otherwise arbitrary, 
base flow. There is no restriction on the dimensionality of physical space or that of 
propagation space. The base flow is quite general and may very well be viscous or 
turbulent, although the wave packet is assumed to be inviscid. Our success depends 
on the introduction of a new set of dependent variables, say ( a , p ) ,  and on the 
decomposition o f a  into its components in cross- and propagation spaces. Some of the 
basic ideas are outlined in $2. Section 3 contains a discussion of the slowly changing 
nature of the base flow and some additional in-depth comments on the work of 
Russell. 

In Qp4, 5 ,  and 6, we derive two versions of the amplitude equation, (32c) and (35), 
using the usual high-frequency ansatz, and find that ordinary wave action is not 
conserved in the usual sense; there is a single source term which depends on the 
gradient of the base flow acceleration when the base flow has dissipation. 

In $7, we discuss the bilinear Lagrangian using the formalism of Hayes (1970). It 
is interesting to note that the bilinear wave action i s  conserved, although the 
ordinary one is not. This simply reinforces the fact that  the conservation of the 
bilinear wave action generally does not say much about the development of an 
unstable wave packet in a flow. Thus, the limitation of Russell’s (1986) work is 
immediately apparent. We also give a very explicit representation of the bilinear 
wave action density in terms of the relevant amplitudes and mode shapes (45a). 
Finally, we show how the amplitude equation may be obtained from an intrinsic 
Lagrangian density defined entirely in terms of quantities of physical interest, 
without the introduction of auxiliary variables (j?, n). 

2. Formulation of the problem 
Consider an incompressible (i.e. constant-density) unperturbed base flow, of 

velocity U = U ( x ,  t ) ,  obeying the equations of momentum and continuity (suitably 
non-dimensionalized), DU 

Dt - = P ( x ,  t ) ,  ( l a )  

v.u= 0) ( 1 b )  

where ~a 
- = -+ u.v 
Dt at 

denotes differentiation in time, following the unperturbed fluid motion. A point in 
physical space is represented by the Cartesian vector x, and t stands for time. In this 
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paper, the momentum equation ( l a )  has a dual interpretation. In the first 
interpretation, which is a kinematic one, 9 ( x ,  t )  is simply a shorthand notation for 
the fluid acceleration, whereas in the second interpretation, which is a dynamic one, 
F ( x , t )  stands for the applied force. If the base flow is laminar, 9 ( x , t )  is readily 
expressible in terms of the (unperturbed) pressure gradient, the divergence of the 
shear stress, and (possibly) the body forces acting on the fluid. On the other hand, 
if the base flow is turbulent, we choose V ( x , t )  to be the long-time average velocity 
(in the spirit of Gaster et al. 1985). In this latter case, no explicit closed-form 
expression can be given for P ( x ,  t )  if the quantity is interpreted as a force. Unless 
otherwise stated, we adhere to the first interpretation, which is more general than the 
second, although our final results assume an especially simple form when F ( x , t )  
consists of the unperturbed pressure gradient only (P denotes the unperturbed 
pressure). In this paper, we consider U =  U(x,t) to be a given quantity so that 
LF = S ( x , t )  can always be computed from ( l a ) .  

Let us now assume that our base flow is perturbed by an arbitrary disturbance, 
whose (perturbation) velocity and pressure fields are denoted by u(x, t )  and p(x ,  t ) ,  
respectively. The relevant linearized equations for these quantities are 

Du --+u.vu= Dt - v p ,  

w - u  = 0, ( 2 b )  

where we have assumed that the disturbances are inviscid. Our interest is in the case 
where the perturbations are the instability waves of the base flow ; these waves may 
be considered inviscid when the effective Reynolds number of the base flow (which 
we now assume to be of a free-shear-flow type, i.e. mixing layers, wakes, jets) is larger 
than about 500 (Betchov & Szewczyk 1963). Actually, most of our analysis is also 
applicable to wall-bounded shear layers provided that we look at  only their inviscid 
short-wavelength instabilities (of the secondary type) which are known to occur 
when the original base velocity profile develops an inflection point due to 
nonlinearities induced by the primary instability wave. In order to be specific about 
boundary conditions, we restrict our discussion to free-shear layers, however. 

To repeat, our principal objective is to study solutions of (2a, b )  when the four- 
vector (u, p )  represents an instability wave packet which is propagating on a slightly 
inhomogeneous (but given) base flow. The inhomogeneity, which will be made precise 
in the next section, is present in both space and time. 

The simplicity, success, and beauty of such a study depend critically on the choice 
of the dependent variables. Motivated by some classical work on plasma instabilities 
(Bernstein et al. 1958), we introduce a ( x ,  t )  and p ( x ,  t )  as our new dependent variables, 
where 

Da 
Dt u = - -a-VU.  

The perturbation equations (2a ,  b)  transform into 

- - V p + a . W P ,  D2a 
Dt2 
-- 

(3) 

Vea = 0. (4b) 
Recall that F is the acceleration of the base flow and p is the perturbation pressure. 
A physical interpretation for a = a(x , t )  is this: Consider a fluid particle of fixed 
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identity that occupies the point x (at time t )  in the unperturbed base flow. The 
position of this same particle in the perturbed flow (at time t )  is defined to be x+a. 
In other words, the particle that would have been at x in the base flow is actually 
at  a slightly different position (namely, x + a )  in the disturbed flow. Crudely 
speaking, a represents the ‘relative displacement of a fluid particle’; i t  is a quantity 
that can be measured experimentally by so-called ‘imaging methods’. We shall be 
working with (4a,  b )  rather than (2a, b ) .  

One significant advantage of (4a,  b )  is that they are derivable from a bilinear 
Lagrangian formulation. Because of this, the powerful apparatus of kinematic wave 
theory can be brought to bear on our problem, and this will be done in $7 .  Since the 
tensor V 9  is, in general, non-symmetric, a Lagrangian density, involving only 
( a , p ) ,  does not exist. Even if such a Lagrangian did exist, as in the case when 
9 = -VP, i t  would be of limited value for instability waves because these waves 
possess an exponential growth in addition to an oscillatory behaviour. Therefore, the 
wave is not periodic in either space or time. 

A very useful suggestion of Russell (1986) is the introduction of a bilinear 
Lagrangian density involving a set of dependent variables, @ = (a , j? ,p ,  n), in which 
( a , p )  are our physical variables and ( j ? , m )  are auxiliary variables used in the 
construction of the Lagrangian. @ = (a2) is a vector with eight components (i = 1, 
..., 8), however, no boldface is used on @. The bilinear Lagrangian density is 

and the corresponding variational principle is expressible as 

6 dt L d x = 0 ,  ( 5 b )  S S  
where @ = a @ / a t .  

with ( 5 b ) .  Four of these are simply (4a, b )  for ( a , p ) ,  and the other four are 
There are eight Euler equations (in the sense of variational calculus) associated 

Note that ( p ,  n) serve as Lagrange multipliers for the incompressibility conditions on 
(j?, a ) ,  respectively. 

The equations for ( a , p )  and (/3,n) are decoupled, and for suitable choices of (#,n), 
the classical ideas of kinematic wave theory can be readily applied to our problem. 
Roughly speaking, if ( a , p )  represent an unstable wave, (/?,n) will represent the 
corresponding stable wave. Note that when V9= is a symmetric tensor, ( a , p )  and 
@,n) satisfy identical equations. In  this case, the Lagrangian density (5a) may 
be reduced to the usual one if we take j? = a and n = p .  

In $7, we also need certain elementary results that are best summarized here. Let 
L d  and L, be two eight-vectors which are obtained by differentiating the Lagrangian 
density (5a )  with respect to d = a@/& and @, respectively. A straightforward 
explicit calculation shows that 

L&= - -,o,o , ( 7 4  

(7 b)  
1 [ZE 

L, = [V9.j?, a -  V P ,  0.~3, V-a]. 
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Both L, and Ld are written as row vectors. In addition, let Lv, be a three-by-eight 
tensor whose (i,j) component is obtained by differentiating L with respect to 3@*/i3xi. 
Once again, an explicit calculation on (5a) shows that 

1 Lv, = [ UDt+7r/, UDt+p / ,O ,O , DB 

where / is the three-by-three idemtensor and the two zeros stand for two three- 
dimensional column vectors with zero entries. 

Finally, we quote a profound result of Hayes (1970) on which our discussion in $7 
will be based. Let us assume, for the moment, that the Euler equations, (4a ,  b )  and 
(6a ,  b ) ,  have solutions which are periodic in a real parameter, say 6,  of period p. 8 is 
the phase-shift parameter of Hayes so that we have 

@ ( x , t ; e )  = ~ ( x , t ; o + ~ ) .  (8) 
An explicit representation of @(x, t ;  6)  will be constructed in a later section. It suffices 
here to observe the identity 

a aL 
- (Ld.@8)+v . (Lv , .@o)  = - 
at ae 

where O8 = a@/a6 and, to repeat, O satisfies the Euler equations 

%+V.L,,-L, at = o 
and (9a )  arises from (9b)  after ‘dotting’ the latter by @@ and rearranging some of the 
terms. If we now average (9a) over the phase-shift parameter, we obtain 

a -  
-(Ld,‘@e)+V‘(Lv,.@o) at = 0, 

where the overbar denotes ‘phase averaging’; that is, 

Note that, upon averaging, the right-hand side of (9a )  vanishes since the Lagrangian 
density, L,  is periodic in the phase-shift parameter, 6. 

Equation (9c)  is a basic conservation law which will be used, in several different 
ways, in later sections. Our final results ($06 and 7 )  will involve concepts such as 
frequency, growth rate, wavenumber, and a small parameter B (which is a measure 
of the inhomogeneity), but it is important to realize that the existence of (9c)  is 
completely independent of these concepts (Hayes 1970). 

In closing, we note that the perturbation equations for ( u , p )  also possess a 
Lagrangian in terms of Clebsch potentials (Seliger & Whitham 1968). However, in 
instability theory, we need a bilinear Lagrangian, and this is especially simple to 
construct for our new dependent variables ( a , p ) .  

3. Slowly diverging base flows and related ideas 
Let us now consider approximately ‘unidirectional’ base flows and write the 

functional dependence of the base velocity profile, U, on the space coordinate, x, as 

u= ucv,x), (104 
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where y ,  X denote the so-called lateral and longitudinal coordinates (Bretherton 
1968); the dependence on time is for the moment suppressed in ( 1 0 ~ ) .  The two 
subspaces y and X are mutually perpendicular, and their direct sum comprises the 
physical space x. We next assume that the velocity profile depends sIowly on the 
longitudinal coordinates in the sense that the dependence on X occurs through a 
quantity < = ex, where 0 < e 4 1. The parameter e is a measure of the inhomogeneity 
of the flow in longitudinal space. Finally, we assume that the dependence of U on 
time also occurs through a slow variable, say 7 = et. Thus, we write 

u= UtY><,7) (106) 

and note that in ( l o b ) ,  the derivatives of U, with respect to each of its arguments, 
are of order unity. Our primary independent variables in the rest of this paper are 
y (lateral space), 5 (longitudinal space), and 7 (time). 

The separation of physical space into lateral and longitudinal spaces implies that 
the basic spatial differential operator, V, becomes 

( I l a )  v + v, + sv, 
where V, and Q denote the gradient operators in lateral and longitudinal space, 
respectively. In  the latter, differentiations are with respect to  the variable 4. (Note 
that for simplicity of notation, V is used to denote two different things, namely, a/ax 
and a/a<; from here on, V = 3/34.) 

Clearly, (106) describes a flow which is changing slowly in longitudinal space. As 
a result, from the mass continuity of the base flow, ( l b ) ,  the lateral velocity 
components will be of O(E)  under the assumption that a t  y = 00,  the lateral velocity 
is small. Therefore, it is useful to rescale these components, and to write 

u+ev+ u, (11 6) 

where V and U denote the velocity in lateral and longitudinal spaces; both of these 
velocities are of order unity. (Once again, there is a slight ambiguity of notation in 
the sense that U stands for two different things; from now on, U will be the vclocity 
in longitudinal space.) 

For E = 0, the base flow is said to be parallel, and the disturbance equations 
(4u, 6 )  have solutions of the form 

Q = d(y)exp(wt+ik-X)+c.c., ( 1 2 4  

where w and k are the (complex) frequency and (complex) wavenumber vector, 
respectively. Whenever Q is required to  vanish at y = 00, the wavenumber and 
frequency are connected by a complex dispersion relation, 

w = w ( k ) ,  ( 1 2 b )  

and &(y)  is essentially an eigenfunction in lateral space. Therefore, instability waves 
are modal waves, and the lateral and longitudinal spaces above are identical with the 
cross-space and propagation space of Hayes (1970). Note that in (12a),  C.C. denotes 
the complex conjugate of all the explicitly written terms to the right of the equal 
sign, i = ( -  l):, and the perturbation pressure is also described by a modal 
representation in the form of (12a). Furthermore, observe that the imaginary unit, 
i,  is missing from our definition of the complex frequency, w .  (In the terminology of 
stability theory, w is called the complex growth rate; in order to bridge the gap 
between stability and kinematic wave theories, we call w the complex frequency, 
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although it is the imaginary part o f o  that represents the oscillatory character of the 
wave.) 

Let us now apply decompositions (1 1 a, b )  to the base flow equations, ( 1  a ,  b ) .  After 

(134 

(13b) 

expanding 9 as 9 = F(0) + &=(l) +e2*(2) 

and substituting it into ( la,  b ) ,  we find 

at O(eo) : *(O) = 0 .  

at O(E) : F + ( U . V +  a7 v-V,) u= * ( I ) ,  (134 

v .  u+v,. v =  0 ;  (13d) 

(13e) 

In other words, W1) = F ( l ) ( y ,  <,7) = Ti') is in longitudinal space (indicated by the 
subscript 1 1 )  and W2) = .'F2)(y, 5 , 7 )  = is in lateral space (indicated by the 
subscript I). These results are exact, subject to the slowly varying assumption. 

If the force 9 is given by the negative of the pressure gradient of the base flow, 

P4a)  
9 = -VP,  with 

then from (1 1 a )  and (13a, b)  we find 

at  O(e0) : V,P'O' = 0 (14b) 

av 
at O(e2) : - + ( U . V +  V-V,) v =  W Z ) .  aT 

p = p(0) + Ep(1) + E 2 p ( 2 ) ,  

and P(l) is independent of y ; 

a t  O(e2) : T?' = - v, p'2'(y, 7 )  (14d) 
and P(l),  P(2)  are independent of <. Thus we find that P(l) depends only on 7, and by 
the boundary condition at y = 00 we set 

Let us now see what happens in a laminar flow where, in addition to pressure 
gradients, viscous forces are also present. If we choose c: = O(Re-'), where Re 9 1 is 
the Reynolds number of the base flow, then we find 

= 0. 

q l )  = vz, V(Y, 5 ,  T ) ,  (15) 
where VZ, denotes the Laplacian operator in lateral space. If both pressure gradients 
and viscous forces are present, 2Ff) is given by the sum of the two terms on the right- 
hand sides of (14c) and (15). We shall not give the corresponding expression for Fy) 
in the presence of viscosity since, in the rest of this analysis, we ignore terms of O(?) ; 
we shall investigate only the lowest-order effect of the inhomogeneity. 

At this point, we are in a position to make some detailed comments on the work 
of Russell (1986). In $3 of his paper, Russell goes through a series of transformations 
to arrive at his equations (3.10a, b)  and (3.11) which, we believe, roughly correspond 
to our (4a, b )  and (3), respectively. The essential term a .  (V, + EV) 9 is missing from 
his equations ; Russell assumes from the outset that the base flow is inviscid so that 
9 is minus the unperturbed pressure gradient. In this case, the term in question is 
no greater than O(e2), and thus it may be ignored in the lowest-order theory (see 
(14~) ) .  On the other hand, in the physically realistic situation when the spreading of 
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a free-shear flow is caused by laminar or turbulent stresses, a -  (V, +EV)  2F is of O(E) 
(see (15)), and the term in question must be kept, even in the lowest-order theory. In 
other words, Russell’s work sheds no information on the simplest and most relevant 
of problems, exemplified by the evolution of an instability wave packet in a 
spreading mixing layer or jet (see the work of Gaster et al. 1985). 

4. Disturbance equations - high-frequency ansatz 
Our principal aim in this section is to develop an approximate solution to (4a, b)  

for small values of the inhomogeneity parameter, E .  Here, and in the rest of this 
paper, we take advantage of the lateral-longitudinal space decomposition and 
explicitly substitute (1  1 a, b)  into (4a, b) .  The relevant equations become somewhat 
cumbersome but are needed in this form for the application of the high-frequency 
ansatz. 

In a very straightforward way, we obtain for our perturbation momentum and 
continuity equations 

e2a, + 2e2( U -  V + V-V,)  aT+e2( UU:VV + 2UV:V,  V + VV:V,  V,) a 

= - (V, + EV) p - 9. (V, + EV) a + Q.  (V, + EV) 9 (16a) 

(V,+EV).a = 0. (16b) 
To cmphasize, 7 = et is a slow time, ( )T = a( * )/a7 ; < = E X  is a slow space scale ; y is 
the lateral coordinate ; V, = a/ay and V = a/ac represent the gradient operators in 
the lateral and longitudinal spaces, respectively; and 2F = e S f ) +  ... is the 
acceleration of the base flow. U(y, c, 7 )  and V(y,  <, 7 )  are the base flow velocities in the 
two spaces, and the actual base velocity is given by U+ E V .  

We next separate our disturbances into rapidly growing and oscillating parts and 
more slowly varying ‘ amplitude functions’. In the spirit of the high-frequency ansatz 
(Lewis 1965), we write 

a = E$+c.c., p = E$+c.c. ( 1 7 4  

with E = exp(#/E+iO), i = (-i):, (17b) 
where q5 = $(<, 7 )  is the complex phase, B is the (real) phase-shift parameter, and C.C. 

denotes the complex conjugate of all the explicitly written terms to the right of the 
equal sign. Since we shall not be dealing with nonlinear entities until we discuss the 
Lagrangian formulation, we shall omit C.C. in this section and in 995 and 6. In 
addition to (.17), the ‘amplitude functions’ 2 and $ are expanded as 

ai = a(O) + + . . . , (184  

(18b) * = pco) + E  p (1) +..., 
where the variables in (18) depend on y ,  5 ,  and r .  The characteristic wavelength of 
a typical instability wave (say, the most unstable wave in the packet) is on the order 
of the characteristic dimension of a free-shear layer in lateral (cross) space. In our 
normalization scheme, the wavelength of the individual waves is of 0 ( 1 ) ,  and the 
presence of the factor e-l in (17 b)  implies that this wavelength is much smaller than 
the lengthscale on which the inhomogeneity of the base flow occurs in longitudinal 
space. 

Based on our high-frequency ansatz, it is possible to show (see (26))  that a#/&- and 
-iV$ are the local frequency and wavenumber. These change by an O( 1) amount on 
the lengthscale of the inhomogeneity; on the other hand, the change in these 
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quantities in one wavelength is O ( E ) .  It is also possible to consider a more general 
situation in which the fractional change in the wavenumber per wavelength is some 
other (i.e. fractional) power of e (Nayfeh 1980). 

We next substitute (17) and (18) into (16)  and collect terms of O(so) and of O(e). 
After noting the differentiation rule 

Eva = E(V4 +EV) 4 (19) 

at O(EO) : &’(#7, -iV#) (a(O),p(O)) = 0, (20a)  

w i  a(O) + ikp(O) + V, p(O) (a %vector), (20b)  

ik 0 a(O) + V, - a(O) (a scalar), (20c) 

where wo(w,k) =w+ik-U.  (20d  

and its counterpart for sa/&, we obtain 

where 4, = a@/ar and Y ( w ,  k)  is a linear operator whose action on (a(O),p(O)) is defined 
by 

The operator 9 and some of its characteristics will be discussed in the next section. 
It suffices here to note that o = #T is a (complex) frequency and k = -iV$ is a 
(complex) wavenumber in propagation space. In a similar (complex) sense, wo is the 
Doppler-shifted frequency seen by an observer moving with the base velocity U in 
longitudinal space. 

As usual, at  the next order in e, we obtain inhomogeneous equations for (a( l ) ,p( l ) ) .  
These have the form 

at O ( E )  : 2(#,, -iV4) = (RR,), ( 2 l a )  
where 

R = - D i l a ( o )  -2U0 II- D a(O) ( v. v, u. v4) a(0) -2w0 v. v, a(0) - v p ~  + a(0). 0, ~ i l ) ,  

(21 b )  
D7 Dr 

(21 c )  R = -V.a(O) 

and ~a At = -+ U.V. 
D7 a7 

There are several points to note. First, in (21b),  wo = w ~ ( # ~ ,  -iV#) (i.e. w is replaced 
by 9, and k by -iV#, where # is the complex phase); second, Dll/D7 denotes a 
substantial derivative in longitudinal space ; and, third, (21 a)  is to be interpreted in 
the following way: Replace (a(O),p(O)) by (a( l ) ,p( l ) )  in (20b ,  c )  and then make an 
equation out of these by placing R and R, on the right-hand sides. 

Since the homogeneous equation (20 a )  has non-trivial solutions with null boundary 
conditions at y+ 00,  the operator 9 is singular. In this case, the inhomogeneous 
equation (21 a )  will have a solution (in fact, infinitely many) if and only if the right- 
hand side, (R,R,), satisfies the so-called solvability condition. This is discussed in the 
next section. 

5. Modes and solvability 
The first task ahead of us is to solve the modal version of (20a) ,  namely, 

15 
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with a, and p ,  vanishing a t  y +  co, where the subscript m denotes ‘mode’. It turns 
out (Betchov & Criminale 1967; Drazin & Reid 1981) that (22) with the specified 
boundary conditions will have a non-trivial solution if and only if the frequency, w ,  
and wavenumber, k, obey the complex dispersion relation, 

w = w(k , t , 7 ) ,  (23a)  
which now depends on the slow scales 4 and 7 because of the inhomogeneity of the 
base flow. Since w depends on k ,  the modes have functional forms 

a, = Qm(.Y, t, 7 ,  k), pm = pm(y, t, 7 ,  k )  (236) 

(i.e. a,  and p ,  are explicitly independent of w ) .  
The form of the continuity and momentum equations, (20a), together with 

expressions (20b, c), suggests that  we should explicitly decompose am into its 
components in the cross- and propagation spaces. In  order to accomplish this, we 

(24) 
write am = Q-iW, 

where Q = Q(y,C,7,k) and W = W ( y , t , 7 , k )  are vectors in the cross- and 
propagation spaces, respectively. The subscript m is omitted on Q and W because it 
is only in this modal context that  we use these two letters. 

After substituting (24) into (22) and performing a few more-or-less obvious 
algebraic manipulations, we arrive at 

k.  W 
k - k  ’ p ,  = w;- 

with wo = w&w, k )  = w+ik. U,  ( 2 5 d )  
and (k.  W) is what we call a scalar mode, which satisfies a version of the Rayleigh 
stability equation 

B(k* W) = V ~ . { W ~ 2 V ~ [ ~ ~ ( k .  w)]}-k*k(k. W) = 0. (25e)  
We call B( . ) the Rayleigh operator. 

In actual practice, the dispersion relation, (23a) ,  and the scalar mode, (k. W), 
come from solving (25e) ,  for a given k ,  6 ,  and 7 ,  with boundary condition k .  W+O 
as y --f 00. Typically, these solutions can be obtained only numerically. Once the 
scalar mode is calculated, the physical quantities of interest, (a,,p,), may be 
obtained from (25a ,  b, c) and (24). The normalization of the modes is irrelevant. 

The simplicity and generality of the previous decomposition is another compelling 
reason for using ( a , p )  in place of ( u , p ) .  For the latter variables, the components of 
u in the cross- and propagation spaces are not decoupled because of the presence of 
the base flow velocity gradient in ( 2 a ) .  We observe from (25c) that the component 
of the displacement, a,, in propagation space is along the wavenumber, k, and is 
proportional to the perturbation pressure p,.  Similar results hold for the 
perturbation velocity field of an acoustic wave (Hayes 1968). Finally, note that wo also 
depends on the slow variables 6 and T and on y ,  but this dependence is not indicated 
explicitly in ( 2 0 d )  or (25d) .  
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It is now clear from (22), (20a), and (23a) that  the lowest-order equations for 

(26) 
We interpret (26) as a first-order partial differential equation for the complex phase 
9. Its  solution by the method of (complex) characteristics will lead to (complex) rays 
(Gaster 1981 ; Itoh 1981 ; Russell 1986). We shall not discuss these rays a t  this point 
because our primary interest is in the 'transport ' or amplitude equations. Of course, 
(26) need not be solved by the method of characteristics, so rays (complex or 
otherwise) are not essential to our theory. 

The lowest-order solutions must be proportional to (a, ,p,);  to express this, we 

(a(O),p(O)) will have a solution if and only if 

A = (4 - iV$, 5 , 7 ) .  

write 

where A = A(4 ,7 )  is a slowly varying complex amplitude (so far arbitrary), and 
(am,pm) on the right-hand sides of (27) are evaluated at k=- iV# .  The partial 
differential equation for the amplitude, A ,  is determined from the next-order 
solution for (a(1), p ( l ) )  by enforcing the solvability condition on the inhomogeneous 
terms (R,R,) (see ( 2 1 ~ ) ) .  

The second task ahead of us is to accomplish this explicitly and simply. Define an 
inner product of two scalar complex-valued functions, say f and g, by the usual 
formula 

where the integration is taken over the cross-space and the tilde denotes complex 
conjugation. I n  order to enforce solvability, it is very convenient to transform (21 a )  
into a single equation for the quantity (Vq5-a")) - the steps for this operation are 
exactly the same as those leading to (25e). The final result is 

where, in (29a), we have separated the vector R of (21 b)  into its components in cross- 
space, R,, and in propagation space, RII, via 

R = R,+iRI,. (29b) 
Note the presence of i in (29b) and the facts that in (29a) wo is evaluated at w = q5T 
and the wavenumber k in the Rayleigh operator and in o,, is replaced by -iVq5. 

The precise statement of solvability is that the right-hand side of (29a) must be 
orthogonal to solutions of the adjoint Rayleigh equation. Two functions are 
orthogonal if their inner product vanishes. Under our definition of orthogonality, 
(28), the adjoint Rayleigh equation for a variable, say h, and the corresponding 
solution are 

(30a) 9 * ( h )  = hji V, * (hji2 V, h)  - f * f h  

and h = hj iR.  ?V, (30b) 
where, to  repeat, W* is the adjoint operator, the tilde denotes complex conjugation, 
and the adjoint solution, h, is directly expressible in terms of W (which is essentially 
the component of the displacement, a,, in propagation space). We require the 
adjoint solution to  vanish as y +  00 ; this is automatically satisfied because k- W 
vanishes. 

In  order to enforce the solvability condition (or orthogonality), we multiply the 
right-hand side of (29a) with the conjugate of h and integrate over cross-space. The 

15 2 
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cross-space gradient operator, V,, is removed from the integrand by successive 
integrations by parts and by invoking Rayleigh’s equation, (25e), at suitable points 
in the analysis. The final result is remarkably simple: 

r 

where the integral in (31) is taken over cross-space and RL and RII are defined by 
(29b). Equation (31) provides a single (complex) constraint which is used to 
determine the (complex) amplitude A ( < ,  7). This is done in the next section. 

6. Amplitude equations and group velocity 
In order to enforce solvability condition, (31), explicitly, we use (21b, c) for R and 

R,, (27) for (a(O),p(O)), and (24) and (25) for (am,pm). The algebra is fairly lengthy but 
moderately straightforward, and we simply quote the final result followed by a short 
description of the actual manipulations. Let us define two complex quantities 

in which the integrals are known once the modes are calculated. (The subscript f 
stands for flux.) In other words, the only unknown in d is the complex amplitude 
A ,  and the dependence of the former on the latter is quadratic. Similar remarks hold 
for df. One of the key results of this paper is our basic amplitude equation (in its first 
version) 

in which the coefficients of A 2  are also known from modal calculations and the base 
flow. We shall give a detailed physical interpretation for (32c), but only after we 
present a second version for it. 

The first and last terms in (42c) arise from the 7-partial derivatives in and the last 
term of (21b), respectively. The second term under the divergence comes from the 
pressure gradient in (21b) and the term, R, =-V.a(O), in (21c). Finally, the 
remaining terms in (21b) yield the first term under the divergence in (32c) plus one 
extra term which is a pure divergence in cross-space. Upon integration over cross- 
space, only the term df survives. 

We now briefly show that the argument of the divergence in (32c) may be 
rewritten in terms of the (complex) group velocity. In order to do this, we 
differentiate the modal equations, (22), with respect to the wavenumber, k, and dot 
the resultant equations from the left with an arbitrary vector, say K, in propagation 
space. The first significant intermediate result is 
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where aw0 R‘ = - 2 w  K.-am-iKp,, ak 

RL = -iK-a,, ( 3 3 4  

. ao G = 1 -  ak ( e ,  7 constant). 

Clearly, G is the group velocity. Since (33a)  must have a solution, the solvability 
condition (31)  must be satisfied for an arbitrary K. This implies (after a bit of 
algebra) 

r r 

which is called the basic identity by Lewis (1965) in the special case of local 
hyperbolic waves. 

We may now eliminate the argument of the divergence in (32c) in favour of the 
group velocity via (34) .  The second version of our amplitude equation thus becomes 

Equation (35) is in the form of a standard conservation law. Volume integrals of 
d are conserved in propagation space subject to the fluxes ( G d )  and the source term 

v = iA2 Q - V ,  Fi”. Wdy. (36)  s 
Roughly speaking, the source term is proportional to the cross-space integral (i.e. 
an ‘average ’) of the changes in the base flow accelerations in cross-space projected 
onto the propagation space. For perfectly parallel and steady base flows, 

DU *=-=o,  
Dt (37)  

and in this case d obeys a pure conservation law (without a source term). Actually, 
much more can be said for parallel flows since, in this case, the wavenumber, k, 
satisfies 

(38a)  
ak -+G.Vk = 0 
a7 

and (37) ,  (38a) ,  and (35)  imply (see Itoh 1980) 

CIA2 
- + V - ( G A 2 )  87 = 0. 

This special result can also be derived by the saddle-point method, which shows that 
the group velocity is real and is given by c/7  (Gaster 1975). For inhomogeneous base 
flows, the group velocity is complex in general. 

7. Lagrangian considerations 
We have now reached the centre of gravity of this paper, and the reader who is 

only interested in using the amplitude equations (32c) or (35)  can proceed as follows : 
He can calculate the frequency, w, and the pressure mode, pm, for a given base flow, 
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as a function of k, c ,  and 7, using his favourite Rayleigh solver, and then compute 
(k. W) from (25a). Once this quantity is known, Q and W follow from (25b, c). At 
this point, essentially all the coefficients of the amplitude equations are known, and 
the latter may be integrated by (say) numerical methods for partial differential 
equations in real   space or by methods for ordinary differential equations in 
complex (c,r)-space, along the rays. In  a separate study, we are comparing the 
results from these two approaches. We remind the reader that the acceleration of the 
base flow is written as 9 = e 9 $ )  + . . . so that, in this paper, S$1) is considered to be 
a given quantity. If the amplitude equation is solved as a partial differential 
equation, (32c) is probably preferable to (35) since the former does not require the 
calculation of the group velocity. 

It is, however, worthwhile to  carry the analysis a good bit further using the 
Lagrangian formalism. In the following three separate subsections, we shall look at  
three different Lagrangians; we begin with the bilinear Lagrangian of Russell (1986). 

7 .1 .  Bilinear Lagrangian 
The eight-vector @ of the bilinear Lagrangian has components (a, /?, p ,  n) ; see (5a). 
The high-frequency ansatz for ( a , p )  is given by (17) and the corresponding 
expressions for (/?, n) are 

p = J.-q+c.c., n = E-17?+c.c., (39a) 

where E-’ = exp ( - d/e- iB). (39b) 
The boundary condition requires (/?, n) + 0 as y + 00. It is clear that  if (a ,  p )  represent 
unstable waves (for which $R = Re (9) > 0 ;  the subscript R denotes the real part of 
a complex _quantity), then (B,n) stand for stable waves. Also, the ‘amplitude 
functions’ (/?,+) are expanded as 

/i = PO’ + @’) + . . . , 7i = n(0) + m ( 1 )  + . * . , (39c) 
where terms of O(e2) and smaller are ignored. 

Now, let us note from (4a, b )  and (6a ,  b )  that ( a , p )  and (/?, n) obey similar (but not 
identical) equations so that from the analogue of (20a), we conclude that ( 8 ( O ) , d 0 ) )  
must be a mode with frequency ( - $,) and wavenumber ( + iV#). I n  other words, we 
may obtain (Po), do)) from (25) by making the substitution k +- - k and w + --w. After 
observing from (25e) that (k. W) is symmetric under this transformation, we 
conclude that so are p ,  and Q, but W is antisymmetric. Therefore, 

Po) = B(Q + i W), do) = Bp rn, (40) 
where B = B({ ,  7 )  is a slowly varying amplitude associated with the auxiliary 
variables (/?, n). In general, B =I= A since a t  O ( E ) ,  the gradient of 9 enters differently 
for (/?,n) than for ( a , p )  (see (4), (6), and (21b) ) .  We shall elaborate on this point at 
the end of this subsection. 

The various terms in (9c) may be evaluated with the help of (7a)  and (7c).  We 
tentatively write 

and, with this temporary notation, the argument of the divergence in (9c) turns out 
to be (of course, recall (1  16) )  

L&,.@, = P ) + € r ( ’ ) + 0 ( 6 2 )  (41 a )  

L,, * @, = U( PO) + SF”) + e V P  + BO’ + En’) + O( s2), (41 b)  
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where the r and E in (41) will be defined below (see (43) and (44)). First, however, 
we determine which of these four quantities we actually need for a conservation law 
in propagation space if we neglect terms of 0 ( e 2 )  and smaller. 

The answer to this question comes from (Sc), after noting that a/at = sa/&r and 
using (1  1 a )  for the divergence operator in (9c) .  The final result is 

ape) 
aT € -+ v, - [ U P ’  +€UP) + E Y P  + EO’ +EBl’] + sv. [ U P ’  + BO’] + O ( E 2 )  = 0, 

(42a) 

at O(so) : V1.E@) = 0;  (42b) 

and (42a) implies 

ape) 
at O ( E )  : -+V,.( aT V ~ ~ ’ + ~ ~ ’ ) + V . ( U ~ ~ ~ + ~ ~ ~ )  = 0. (42c) 

Note that terms of the type V, - (UFO)) are absent in the above equations since V, 
is an operator in cross-space and U is in propagation space; these two spaces are 
orthogonal. 

The first of these absolute laws, (42b), requires that Eo) be solenoidal in cross- 
space. A direct calculation shows that 

EO’+EE1)+ ... = q + p X ,  (43a) 
so that (43b) 

via (39), (aO), (27), and (24). We have also used the fact that @ = (a,/3,p, n) is periodic 
in the phase-shift parameter 0 (of period p = 217). The solenoidal condition is 
trivially satisfied since Eo) lies in propagation space. 

E0) = in(O)a(O) - ipco)fl0) + C.C. = 2AB Wp, + C.C. 

From (41a) and (7a), we find 
-- 
D/3 Da 
Dt Dt 

P ’ + E P +  ... = --*a,+--.ps 

and a direct evaluation of the right-hand side of (44a) gives 

= -2iABoo(Q.Q+ W .  W)+c.c., (44c) 

where we have used steps similar to those in the derivation of (43b). We shall not give 
the expressions for F1) and El) because they do not enter into our conservation law 
in propagation space. 

Observe the extremely important point that (42 b, c) are conservation laws in 
physical space, whereas (32c) and (35) are conservation laws in propagation space 
only. In the terminology of Hayes (1970), (42b, c) are absolute conservation laws - 
the corresponding laws in propagation space follow from integration over cross-space. 

The second absolute law, (42 c), tries to correct for the fact that Eo) + + . . . is not 
exactly solenoidal ; this quantity is only solenoidal in an asymptotic sense as E --f 0. 
Equation (42c) is somewhat inconvenient to use because it involves not only the 
lowest-order solutions (denoted by the superscript 0) but also the first-order solutions 
(denoted by the superscript I). However, the integral of (42e) over cross-space yields 
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a conservation law in propagation space which involves only thc lowest-order 
solutions. Finally, with the definitions, 

oO(Q.Q+ W-W)dy, (454 

t h c  bilinear conservation law in propagation space becomes 

i -+V- gf+iAB Wp,dy +c.c. = O .  K ( i 11 
Equation (45c) is an explicit version of the conservation principle given by Russell 

(1986) in terms of the usual derivatives (in the sense of kinematic wave theory) 
of the relevant Lagrangian. Since the group velocity satisfies G = iaw/ak = 
i[a( - w ) / a (  -k)], the argument of the divergence may be replaced by (Gg) in (45c). 

It is now quite interesting to  compare amplitude equations (32c) and (45c). They 
both have the same form, except that (32c) has an all-important source term 
associated with it. This clearly points out the limitation of the bilinear formalism; 
although the (bilinear) wave action 9 is conserved, a quantity of far more interest, 
namely d (the ordinary wave action), is not. One cannot conclude anything about 
t,he amplit,ude A from a knowledge of 9 unless, of course, either A or B is computed 
directly. This takes us back to (32c). From fundamental identity (Sc), it is 
abundantly clear that we can always find an (absolute) conservation law as long as 
there exist a Lagrangian associated with a problem and a periodic one-parameter 
family of solutions. Since we may always introduce auxiliary variables, say ( j l ,  n), ..., 
etc., in the construction of the (pseudo) Lagrangian, it is probably not too difficult 
to find a conserved quantit,y, analogous to 9, for any reasonable physical system. 
The principal difficulty arises when we try to extract something about the amplitude 
of the actual physical problem from a knowledge of this conserved quantity 
associated with the (pseudo) Lagrangian. 

Since the bilinear wave action, 9, is conserved but the ordinary one, d ,  is not, the 
amplitude, B = B(< ,7 ) ,  of the auxiliary variables @,n) must be such that it 
compensates for changes in A ( < ,  7 ) .  I n  fact, from the transformation W +  - w ,  k + - k ,  
equations (32), (4), and (6) and solvability condition (31), it  is possible to show that 
the ordinary w a v e  action 9, associated with our auxiliary variables (/I, n), satisfies 

where 93 and .??If are defined by (32a, 6) with A replaced by B. It is now clear that a 
suitable linear combination of (32c) and (46), after a slight rearrangement, results in 
( 4 5 ~ ) .  The source term CT has opposite effects on amplitudes A and R so that the 
bilinear wave action 9 - AB is actually conserved. Note that it is possible to arrive 
at (45c) using the high-frequency ansatz and without any reference to  a Lagrangian, 
although the existence of one and the fundamental identity of Hayes (1970) make the 
analysis quite straightforward and provide an independent check. 

7 2. The classical Lagrangian 
If the gradient of the base flow acceleration is a symmetric tensor, ( a , p )  and ( 8 , ~ )  
obey identical equations (see (4) and (6)) ,  and we may choose ( a , p )  = ( b , ~ ) .  I n  this 
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case, the bilinear Lagrangian density, (5a ) ,  reduces to  the classical one (we ignore an 
irrelevant factor of 2). It is interesting to inquire into the meaning of the basic 
identity, (Sc), in this case. 

The analysis is very similar to the one in the previous subsection for the bilinear 
Lagrangian; therefore, we shall be extremely brief. For ease of notation, we 
tentatively write 

(47a) 
and with this notation the term under the divergence in (9c) may be expressed as 

L,,.@, = [ U T ( o ) + ~ U r ( 1 ) + ~ V ~ o ) + ~ 0 ) + e ~ 1 ) + O ( e 2 ) ] e x p  ( ~ # J ~ / E ) ,  (476) 

where we have used (1 1 6) in deriving (47b) ; the r and E remain to be defined (see 
(48b, c ) ) .  Note the formal similarity between (47) and (41); however, in the former, 
the growth rate & = Re(#) > 0 appears in the exponential term because ( a , p )  
represent an unstable wave. Also, the detailed expressions for the r a n d  Ediffer from 
(44) and (43). 

The time and space derivatives of (47a, b)  may be evaluated after observing (11 a) ,  
differentiation rule (19), and its counterpart for a/& = Ea/ar. We then find that, a t  
O(e0),  (9c) yields 

L d .  @@ = [PO) + s P  +O(e2)] exp (2&/€) ,  

%PO) + (UP' +EO') .vq5,+p1 .lP' = 0. (48a) 

On the other hand, a t  O(E) ,  the analogue of (48a) involves both the lowest- and first- 
order solutions. Therefore, the usefulness of the O ( E )  equation is somewhat limited 
and we shall not give it. From the definitions of Po) and Bo), we have 

a7 

T(O) = - ilAI2 w0(Q.  Q + W. F&') + C.C. (48b) 

and Bo) = -ilA12pm(Q+i@+c.c.. (48c) 
Finally, the integral of (48a) over cross-space yields the following equation in 
propagation space : 

(49a) 

where C.C. denotes the complex conjugate of the first term on the left-hand side, 

i r2 -sZ+ ( f + J -  52 i Wp,dy ) .V$, 1 +c.c. = 0 ,  

IA1* = AX, 

D = o,,(Q.Q+ We W)dy (49b) 

(49c) 

I 
I 52, = UwO(Q*Q+ W. m d y .  and 

The term Q is absent from (49a) because Q.Vq5, = 0. 
We interpret (49a) as a conservation equation for the growth rate along certain 

curves in propagation space. This equation can provide a useful check on the 
numerical accuracy of the solution, although (49a) is not an amplitude equation in 
the usual sense. As pointed out by Russell (1986), the usefulness of the classical 
Lagrangian density is quite limited and the bilinear one is far superior for instability 
waves. This is because (for the classical Lagrangian) the amplitude is not determined 
until O ( E )  and, a t  that point, the equation involves the higher-order entities P and 
IF). There is really no conceptual difficulty in dealing with the term exp (24,/e) (see 
(47)), and on this point we disagree with Russell's remarks. 
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7.3. The intrinsic Lagrangian 
At lowest order, our governing equations are the modal equations (22). These 
equations are linear and, for a linear problem, the Lagrangian density is quadratic 
in the perturbations. On the other hand, solvability condition (31) is essentially a 
quadratic constraint, and the question is whether we can use it to define a (complex) 
Lagrangian density relevant to our problem. 

In order to do this, we proceed in a way that appears unnatural a t  first. Let us 
write the modal equations 

w: a, + ikp, + V , p ,  = R", 

ik.am+V,-a, = RZ (50b) 

and separate am and R" into their components in the cross- and propagation spaces 
via (24 )  and (29 b) .  Of course, R" = Iig = 0, but we shall ignore this fact for a moment; 
this is the unnatural part of our derivation. With these definitions, the left-hand side 
of solvability condition (31) becomes 

r 

J 

If we now say that (a,,p,) is indeed a mode (so that the dispersion relation, 
w = w(k), is satisfied) then, of course, (51) vanishes. On the other hand, the integrand 
of (51) exists for any Q, W, pm, w ,  and k, and we use i t  to define the intrinsic 
Lagrangian, A ,  via 

A = A ( Q ,  W,p;w,k,A) =&42[(w+ik.U)Z(Q.Q+ W.W)-2pVl.Q-2pk.W]. 

The fact that A is proportional to A* is typical of all Lagrangians associated with a 
linear problem. It is important to point out that  although (52a) was derived from the 
modal equations, once we have (52a) ,  the complex Lagrangian A is to be regarded 
(as usual) as a function of independent variables Q, W ,  p ,  w ,  k,  and A .  

The variational principle, 
n n n  

6 dr  d t '  Ady = 0, J J J  
in which Q, W, and p are independently varied ( w ,  k,  and A are parameters), gives 
us the modal equations. For example, the variation 6 W yields 

W: W- k p  = 0, ( 5 2 c )  

which is simply the component of (50a) in propagation space (recall R" = R; = 0). 
When the modal equations are solved with decaying boundary conditions a t  y + co, 
we recover the dispersion relation, w = w(k), and A = 0. 

Clearly, by allowing w and k to be independent variables in our intrinsic 
Lagrangian density, we can define A even when the dispersion relation is not satisfied. 
This, of course, is needed if we wish to take true partial derivatives with respect to 
these variables ; the extension of A to non-solutions may be carried out in a number 
of different ways. The final result is insensitive to the particular choice of non- 
solutions used (Bretherton 1968 ; Hayes 1970). 

Now, let A ,  and A ,  denote the usual partial derivatives of the function A with 
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respect to two of its independent variables, namely, w and k. It is a straightforward 
matter to show that our amplitude equation, (32c), may be written in the form 

Equation (53) expresses our result in a form which closely resembles that of 
kinematic wave theory. (The appearance of i in front of the first term stems from the 
fact that  w is really the complex growth rate whose imaginary part is the (real) 
frequency.) The 'adiabatic invariant ' is the cross-space integral of AW, the 
appropriate flux is A ,  (integrated over cross-space), and the source term arises from 
the variations of the base flow acceleration (integrated over cross-space). The wave 
action A? is given by r 

and the ratio 

d =  A,dy J 

is the group velocity, G, once we substitute the actual modal solutions into (54a, b ) .  
The most interesting feature of (53) is that, for the special case considered by 

Russell (1986) (i.e. VISh l )  = 0), i t  expresses a pure conservation principle in the 
classical form of the Lagrangian formalism of Whitham (1974). In  other words, in 
this case, one does not need to  introduce a bilinear Lagrangian a t  all; the complex 
Lagrangian density (i.e. the intrinsic Lagrangian) arising from the modal equations 
and the solvability condition contains the modes and amplitude equation (53). The 
latter is obtained by setting 

in the intrinsic Lagrangian and then taking variations in the complex phase, q5. 
I n  other words, amplitude equation (53) is the Euler equation associated with 
variational principle (52 b ) ,  arising from variations 84. 

It is worthwhile to close by noting the differences between the classical approach 
of the 'averaged Lagrangian' and ours. In  the former, we start with the Lagrangian 
density into which we substitute a modal expression of the form (12a) .  The resultant 
equation is averaged over the phase, and a suitable variational principle associated 
with this averaged Lagrangian yields, among other things, an ' amplitude equation ' 
(Whitham 1974). On the other hand, we start with a set of differential equations into 
which we substitute a modal representation to obtain the modal form of the 
governing equations. A suitable solvability condition applied to these (modal) 
equations yields the intrinsic Lagrangian. The modes and 'amplitude equations ' are 
expressible as the Euler equations of this Lagrangian. 

(55)  w = 4,' k = -iV# 

8. Discussion and conclusions 
We have derived two versions, (32c) and (35) ,  of the equation that governs the 

(slowly varying) amplitude, A(< ,  7), of an instability wave packet riding on top of a 
slightly inhomogneous base flow. These results were obtained by the use of the high- 
frequency ansatz, which separates a disturbance into its slowly and rapidly varying 
parts. The amplitude equation ensures the absence of secular terms a t  O(a), where 
a 4 1 is t,he small inhomogeneity parameter. Our results also are interpreted in terms 
of kinematic wave theories based on various Lagrangian formulations. 
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What is new in this paper is obviously not the existence of such an amplitude 
equation, but its very simple form in terms of the components of the displacement 
variable, a, in cross- and propagation spaces (i.e. Q and W). We feel that i t  is 
reasonable to call d the (complex) wave action density: volume integrals (in 
propagation space) of this quantity are conserved subject to a natural flux and a 
source term. The latter depends on the changes of the base flow acceleration in the 
cross-space and vanishes when the base flow is inviscid. Actually, it  is only the 
components of these changes in propagation space that enter into the analysis. 
The derivation is carried out without any specific restrictions on the dimensionality 
of the problem. 

One major difference between our work and Russell's (1986) is the inclusion of a 
completely general base flow. Because of this, there will be a source term in the 
amplitude equation for the unstable wave and a sink term in that for the stable wave. 
The bilinear wave action density still satisfies a (pure) conservation law, (45c), as in 
Russell's work, but the individual wave actions do not. Ordinarily, one is interested 
in the latter in order to calculate the amplitude and the physical characteristics of 
a packet. These are contained extremely succinctly in our central results (see for 
example (53)). 

Financial help for this work was provided by AFOSR Grant 86-0324. The author 
gratefully acknowledges the support of Dr James McMichael of AFOSR. 
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